dubfi.fluxes.dataprovider_mpi_worker ==================================== .. py:module:: dubfi.fluxes.dataprovider_mpi_worker .. autoapi-nested-parse:: Flux inversion data interface for MPI worker process. .. codeauthor:: Valentin Bruch, DWD .. versionchanged:: 0.1.2 (renamed module) .. versionadded:: 0.1.0 (initial release) Classes ------- .. autoapisummary:: dubfi.fluxes.dataprovider_mpi_worker.MpiDistMecReaderWorker Functions --------- .. autoapisummary:: dubfi.fluxes.dataprovider_mpi_worker._count_same_site_obs Module Contents --------------- .. py:class:: MpiDistMecReaderWorker Bases: :py:obj:`dubfi.fluxes.dataprovider.InsituDataProvider` Read configuration and observation data for flux inversion. Trivial initialization function: only declarate attributes. .. py:method:: fromconfig() :classmethod: Construct instance based on configuration file and data in files. .. py:property:: config :type: dict Inversion configuration. .. py:property:: coords :type: dict Data coordinates, see :func:`dubfi.fluxes.readobs.coordinates_from_config`. .. py:method:: read_config(cfg_path) Read configuration from file. :param cfg_path: path to configuration (YAML) file :type cfg_path: str .. py:method:: read_data() Read data from files. .. note:: Data are read and interpreted without checking the units. .. py:method:: get_Y() Get Y vector (observation minus model prior). .. py:method:: get_H() Get H parametrized vector (observation operator). .. py:method:: get_R() Get R parametrized operator (error covariance matrix). .. py:function:: _count_same_site_obs(ssh_lst, ssh_idcs, time) Count observations at same time and station. Count number of observations at same station and same time, irrespective of the sampling height. Return this number as an array alinged with the observations. This is a helper function for :meth:`MpiDistMecReaderWorker.read_data`. Scientific reasoning: Multiple observations at the same station and time have a strongly correlated model uncertainty. The inversion will assume that the model data mismatch at different sampling heights should agree up to the baseline uncertainty. This will in general underestimate the representativity error. Furthermore, it will give more weights to stations with more sampling heights. Both problems are mitigated by increasing the baseline uncertainty when multiple sampling heights are in use.