dubfi.tests.test_inversion ========================== .. py:module:: dubfi.tests.test_inversion .. autoapi-nested-parse:: Tests for Bayesian inversion. .. codeauthor:: Valentin Bruch, DWD .. versionchanged:: 0.1.1 (changed module path) .. versionadded:: 0.1.0 (initial release) Functions --------- .. autoapisummary:: dubfi.tests.test_inversion.gen_test_arrays dubfi.tests.test_inversion.compare_strict dubfi.tests.test_inversion.compare_strict_diag dubfi.tests.test_inversion.run_test_dense dubfi.tests.test_inversion.run_test_diagonal dubfi.tests.test_inversion.run_test_sparse dubfi.tests.test_inversion.run_test_mpi_defaults dubfi.tests.test_inversion.run_test_mpi dubfi.tests.test_inversion.compare_derivatives_hr dubfi.tests.test_inversion.compare_results dubfi.tests.test_inversion.profile_stats dubfi.tests.test_inversion.compare_InvertorOptimizer dubfi.tests.test_inversion.compare_InvertorOptimizer_diag dubfi.tests.test_inversion.test_compare_strict dubfi.tests.test_inversion.test_compare_strict_diag dubfi.tests.test_inversion.test_invertor dubfi.tests.test_inversion.test_invertor_diag Module Contents --------------- .. py:function:: gen_test_arrays(n, k, m, localization_scale = 10.0, b_prefactor = 0.1) Generate some tests arrays. .. py:function:: compare_strict(n = 117, k = 23, m = 17, tests = 10, norm_prefactor=1.0, regularization=1.0, localization_scale=20.0, b_prefactor=0.1) Compare cost function and its derivatives in different linear algebra implementations. .. py:function:: compare_strict_diag(n = 117, k = 23, m = 17, tests = 10, norm_prefactor=1.0, regularization=1.0, localization_scale=0.01, b_prefactor=0.1) Compare cost function and its derivatives in dense and diagonal case. .. py:function:: run_test_dense(test_arrays, regularization, norm_prefactor, tests=10, profiling=False) Run inversion using dense matrix linear algebra implementation. .. py:function:: run_test_diagonal(test_arrays, regularization, norm_prefactor, tests=10, profiling=False) Run inversion using dense matrix linear algebra implementation. .. py:function:: run_test_sparse(test_arrays, regularization, norm_prefactor, tests=10, profiling=False) Run inversion using sparse (CSC) matrix linear algebra implementation. .. py:function:: run_test_mpi_defaults(n=349, k=23, m=17, **kwargs) Run inversion using MPI linear algebra implementation. .. py:function:: run_test_mpi(test_arrays, regularization, norm_prefactor, localization_scale, tests=10, profiling=False) Run inversion using MPI linear algebra implementation. .. py:function:: compare_derivatives_hr(h, r, states, **kwargs) Test derivatives of parameterized vector H and parametrized operator R. .. py:function:: compare_results(res1, res2, label1, label2) Compare two inversion results. .. py:function:: profile_stats() Show statistics from previously saved profiling data. .. py:function:: compare_InvertorOptimizer(n = 401, k = 23, m = 17, tests = 2, profiling=False, norm_prefactor=0.5, regularization=1.0, localization_scale=20.0, b_prefactor=0.1) Test inversion by comparing inversion results for different linear algebra implementations. .. py:function:: compare_InvertorOptimizer_diag(n = 401, k = 23, m = 17, tests = 2, profiling=False, norm_prefactor=0.5, regularization=1.0, localization_scale=0.01, b_prefactor=0.1) Test inversion by comparing inversion results for diagonal and CSC matrices. .. py:function:: test_compare_strict() Unit test: fails if errors are encountered. .. py:function:: test_compare_strict_diag() Unit test: fails if errors are encountered. .. py:function:: test_invertor() Unit test: fails if errors are encountered. .. py:function:: test_invertor_diag() Unit test: fails if errors are encountered.